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Abstract- The limitations of the conventional automated design 
tools for Micro-Electro-Mechanical-Systems (MEMS) design 
optimization (DO) are discussed in this paper. In order to 
overcome these difficulties, a recent trend in DO of MEMS is 
inspired by the natural evolution mechanism. Various techniques, 
especially the evolutionary computation (EC), have been adopted 
for the DO of MEMS. This paper presents a review of the 
achievements in this infant research area which utilizes EC 
methods for the DO of MEMS and points out the challenges that it 
is facing.  

I. INTRODUCTION 

MEMS is currently one of the most promising new areas of 
engineering. As its name suggests, the MEMS devices integrate 
both mechanical and electronic components. These components 
are fabricated on a common silicon substrate by 
micromachining techniques adopted from integrated circuits 
(ICs), so they have very small scale which can usually be 
measured in micrometers. Although it is still a novel research 
field, more and more commercial applications including 
accelerometers, gyroscopes, pressure and chemical sensors, 
microfluidic systems and optical switch turn up in recent years. 
As the complexity of these devices grows, developing efficient 
computer-aided design (CAD) tools for MEMS DO becomes an 
urgent requirement.  

This paper focuses on one aspect of the research on MEMS, 
the emerging evolutionary approaches applied in the DO of 
MEMS, which highlights the work made by researchers on 
various issues during the MEMS synthesis process after 
specifying the limitations of traditional design optimization 
techniques. 

II. LIMITATIONS OF CONVENTIONAL DESIGN OPTIMIZATION OF 
MEMS 

Researchers and engineers have encountered some unique 
challenges in MEMS DO. One of these challenges lies in 
analyzing the many interdependent physical phenomena to 
which MEMS devices are sensitive and working with small-
scale geometry. MEMS is a interdisciplinary field which 
combines studies in mechanical engineering, electrical 
engineering, electronics, fluid mechanics, optics, chemistry and 
chemical engineering with a vast spectrum of application areas. 
Because MEMS is still in its early stage and it involves a large 

number of disciplines, there is not yet a developed science of 
design for MEMS. For example, some physical phenomena in 
the involved disciplines may be still unknown or well 
understood. Thus, traditional methods like ODE for system 
level modeling may be hard to be applied.  

Another major challenge comes from the expansion of the 
design search space, when MEMS devices become increasingly 
more complex and their performance is increasingly more 
nonlinear. But traditional optimization methods normally work 
within a local view of optimization in the search space, as it 
essentially depends on the start points and search direction. 
With this problem, these traditional deterministic means given 
the same starting point within the search space will always lead 
to the same final solution and probably result in sticking at a 
local optimal point rather than achieving the global optima. 

More detailed information on traditional MEMS DO 
approaches is given in [26]. 

III. EVOLUTIONARY SYNTHESIS OF MEMS 

Synthesis is the reverse of analysis process and it try to find a 
design meeting the desired functions or behaviors [29]. As 
optimization is a process searching for best solutions for 
performance objectives, the synthesis process becomes an 
optimization problem. 

As it becomes difficult for designers and traditional 
algorithms to search for solutions in the complex design space 
of MEMS design, the avenue of stochastic methods of DO 
looks to be a promising approach, especially in the field of 
Evolutionary Computation (EC). There are numerous 
successful applications of EC in other engineering disciplines. 
The ability to handle complex multimodal search landscapes 
and non-continuous design variables could provide the 
breakthrough needed to allow reasonably fast design 
optimization and the design of novel devices beyond a 
designer’s capability in automated design of MEMS. 

Because the application of evolutionary techniques to MEMS 
DO is still in its infancy, there are only a few groups and 
institutions that are involved into this field. Among them are the 
University of California at Berkeley, California Institute of 
Technology, NASA, Michigan State University, Technical 
University of Denmark, and Cambridge University. Several 
important conferences publishing papers in this field include 
Genetic and Evolutionary Computation Conference (GECCO), 
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International Society for Optical Engineering (SPIE) 
conferences and the American Society of Mechanical Engineers 
(ASME) conferences.  

 
Fig. 1.  Modeling subdivision proposed by Senturia [2] 

Since H. Li and E.K. Antonsson [6] made the pioneer work 
that uses genetic algorithm (GA) for the mask layout synthesis, 
lots of evolutionary techniques have been developed to handle 
design difficulties or to improve the design efficiency at 
different levels. Several representative works that EC 
approaches have been applied for MEMS design automation are 
given in the following sections. 
A. Hierarchical Evolutionary Synthesis of MEMS 

Fan et al. [1] implemented an approach combining Genetic 
Programming (GP) and Bond Graph (BG) for the system level 
modeling. According to the modeling subdivision (see Figure 1) 
proposed by Senturia [2], the interactions of the MEMS 
component with its environment and electronics can be 
modeled and simulated at the system level. BG [3] is a 
modeling tool that provides a unified approach to the modeling 
and analysis of dynamic systems, especially hybrid multi-
domain systems. GP [4] is an EC method which involves a 
graph-type representation, typically the tree structure. In their 
work, functions will be added as nodes of the tree. 
Experimental results demonstrate that GP can evolve both the 
topologies and parameters of corresponding RF MEM devices, 
namely band pass filters to meet predefined design 
specifications after a Realizable Function Set was defined. The 
approach is used as the first step of an automated MEMS 
synthesis process. 

A further research that involves both system level and second 
level physical layout synthesis is also shown by Fan et al.[5] 
The second level known as device level in [2] optimizes 
geometric sizing parameters for basic components, which in 
most cases are chosen from micromechanical devices with fixed 
topologies, according to engineering design objectives. The 
authors approach is to model the design problem as a formal 
constrained optimization problem, and then solve it with GA. 
This process is illustrated on the same band pass filter design. 

B. Mask Layout Synthesis of MEMS 
The second level is 2-D layout of basic structures like beams 

to form the elementary planar devices. In some cases, if the 
MEMS is basically a result of a surface micro-machining 
process and no significant 3-D features are present, design of 
this level will end one cycle of design. More generally, 
modeling and analysis of a 3-D solid model for MEMS is 
necessary. However, even if we have obtained an optimized 3-
D device shape, it is still very difficult to produce a proper 
mask layout and correct fabrication procedures. Automated 
mask layout and process synthesis tools would be very helpful 
to relieve designers from considering the fabrication details and 
focus on the functional design of the device and system. [18] 

Evolutionary approach is applied in mask-layout and process 
synthesis by Li and Antonsson [6]. In their research, GA is 
applied to a population of geometrically valid mask-layouts to 
iteratively search for a global optimum individual. The 
fabrication of each layout is simulated using a 3-D etching 
simulator called Segs. The iteration of GA continues until the 
mask-layout with sufficiently close fabricated 3-D shape to a 
desired 3-D shape specified by users is turned up. The research 
is refined with object-oriented architecture, enabling the use of 
any forward process simulator for evaluation [7]. Due to the 
focus on mask layout and fabrication, their work proposes an 
automatic synthesis method at the process level. 

C. Multi-objective optimization methods 
According to the complex nature of MEMS design, in many 

cases, more than one objective needs to be taken into account. 
The DO of MEMS can be recognized as a multi-objective 
optimization process. For example, in designing a meandering 
resonator, the objectives should match a specified resonant 
frequency and stiffness of its legs in each direction, while 
minimizing surface area [16]. 

The Multi-Objective Genetic Algorithm (MOGA) [8] 
approached was first adopted by Zhou et al. [9][16][17] to 
automatically synthesize MEMS designs, specifically 
meandering resonators . In their experiments, both the topology 
and size of the devices are generated by MOGA and the 
geometric validity and performance of each design is evaluated 
by SUGAR [10][27], a MEMS simulation package. In the 
MOGA, Pareto optimality (see Figure 2) is used to make it 
possible to find multiple optimal non-dominated solutions and 
fitness sharing is applied to maintain its diversity. Based on 
Zhou’s work, Kamalian analyzed the influence of geometric 
constraints in the resonator case study [28] and extended to the 
design of more advanced MEMS devices, including 
accelerometer and gyroscope [12]. Zhang [11] continues Zhou 
and Kamalian’s research with a hierarchical MEMS synthesis 
and optimization architecture, in which an object-oriented data 
structure is applied to represent the information of geometrical 
parameters, connectivity, operation instructions and restrictions 
within each MEMS design component. This data structure 
allows flexible and meaningful operations during the iterative 
process, and also makes the MEMS synthesis framework easily 
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extendable to different designs and topologies. Compare with 
Fan’s work, their study mainly focuses on a lower level, namely 
physical level, according to Senturia’s four levels of MEMS 
modeling.  

 
Fig. 2.  Pareto optimality in a two-objective minimization 

problem [12] 
The comparison between the performance of MOGA and 

other methods including Simulated Annealing (SA) [13] and 
Single-Objective Genetic Algorithm (SOGA) in the DO of 
MEMS has been made by Kamalian et al. [14] to validate the 
feasibility of MOGA. The results of evolving a meandering 
resonator using the methods mentioned above show that the 
best ranked design in SOGA converges to the objective faster 
than that in MOGA, but it is stuck at a local optimum. SA can 
synthesize valid designs faster than genetic algorithms in some 
cases, but its dependence on a single objective function and the 
difficulty in finding the global optimum indicate that it is a less 
robust method for many MEMS synthesis problems. 

The similar experiment was conducted by Lohn et al. [15] 
with a concise and extendable genetic programming language. 
A novel evolutionary computation encoding scheme that makes 
all of the phenotypes generated geometrically viable designs is 
developed to minimize computational cost. As a result, they are 
able to evolve designs that had similar or better performance to 
the design presented by Zhou et al. in [16][17] using, on 
average, less than a third to one half of the number of 
evaluations. Furthermore, the genetic programming 
representation supports more complicated structures such as 
loops, branches and even serpentine springs that hard to evolve 
in their early research. 

D. Attempts for Robust Design 
As fabrication process variation in MEMS is inevitable in 

current micromachining techniques, designing MEMS that is 
insensitive to fabrication process variation becomes an 
important issue. The notion of robust design is introduced to 
improve the quality of products with significant variations in 

their manufacturing process. Several attempts for robust design 
in MEMS DO have been made.  

A robust design scheme called Genetic Algorithms with 
Robust Solution Searching Scheme is introduced by Ma et al.  
[19] in the mask-layout and process synthesis problem. In their 
approach, noise factors are integrated into the design process 
using a GA to design a solution. More specifically, a random 
noise with appropriate tested distribution is added into the 
parameter phenotype. In the case study, this method shows its 
capability for addressing mask misalignment.  

Hornby et al. [20] presents two modifications for evaluating 
candidate designs in their EA loops to achieve better 
robustness. One is to add location noise, which intends to 
determine the differences between the actual dimensions of the 
design and the design blueprint in multiple evaluations. The 
other is to apply pre-stress to the design, which incorporates the 
effects of warping during the extreme heat of fabrication. Their 
further study is to test whether these robust designs will work 
correctly in reality. 

Fan et al. [21] formulate the robust design problem as a 
multi-objective constrained optimization problem with two 
design objectives to be minimized in the layout synthesis of 
MEMS, the squared error to the nominal design and sensitivity. 
Then an efficient algorithm NSGA-II [22] is used to find trade-
off solutions. In this approach, only slight modification in the 
objective function can achieve robustness without any change 
in the algorithm process. An Improved DE Algorithm based on 
Stochastic Ranking (IDE-SR) which outperforms the previous 
study on NSGA-II for robust design of MEMS is also 
developed by Fan et al. [23]. 

E. Efficiency Improvement 
Due to the expensive computational costs during simulation 

for large populations in each generation, the evolutionary DO of 
MEMS is a complex and time-consuming process. Therefore, 
improving the design efficiency to find a global optimal design 
in a practical time period becomes a very significant issue. 

One challenge comes from the popular Finite Element 
Analysis (FEA) for the numerical modeling of MEMS, which 
may take hours per evaluation for large population and hampers 
the iterative design process. The development of some reduced-
order modeling tools, like SUGAR based on Modified Nodal 
Analysis, is an attempt to break the limitation of the simulation 
speed. 

Zhang [11] proposes a hybrid evolutionary computation 
method with two levels of optimization techniques: global 
stochastic search and gradient-based local optimization. This 
research extends Zhou’s work [17] by integrating a gradient-
based local optimization technique at the end of global search 
by MOGA to further optimize and fine-tune promising designs 
with fixed design geometries in a computational effective 
manner. 

Because certain qualitative aspects of many design candidates 
can be easily evaluated by a human designer while extremely 
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difficult or computationally costly to be mathematically 
modeled and simulated, the Interactive Evolutionary 
Computation (IEC) method is introduced to embed the human 
designer's visual inspection and domain knowledge into the 
computer-aided MEMS design process. A work in this line was 
carried out by Kamalian et al. [24]. The IEC algorithms are 
based on the non-interactive EC algorithms to achieve local 
optimization. A case study on a meandering resonator design is 
presented to indicate the effectiveness of the IEC approach. The 
non-interactive phase produces the initial population for the 
IEC to search. The results show that the non-interactive only 
approach produces less satisfactory results compared to results 
achieved by using the IEC-enhanced approach. 

To overcome the human fatigue in IEC and compensate for 
the lack of good-pattern recognition capabilities in hybrid GAs, 
Interactive Hybrid Computation (IHC) algorithm is developed 
by Zhang [11]. To reduce human fatigue, user evaluation is 
only applied at certain predefined generations and qualified 
designs will be subject to local optimization during the MEMS 
synthesis process. Meanwhile, IHC uses the results of the local 
optimization to refine fitness values of preferred designs, 
reducing the influence of subjectivity and non-consistency of 
the human evaluation. 

Because the initial population of designs to start the MOGA 
process derives from either user supply or random generation, a 
Case-Based Reasoning (CBR) approach developed by Cobb et 
al. [25] can be incorporated in the MEMS design process to 
accelerate the synthesis process. Maintaining previously 
successful MEMS designs and sub-assemblies as building 
blocks stored in an indexed case library, the CBR serves as a 
knowledge base to provide designs close to current objectives 
and store the current best solutions for future use. The results of 
their experiment demonstrate that combination of CBR and 
MOGA synthesis tools can help increase the number of 
optimized design concepts. 

IV. CONCLUSION 

This paper summarizes the current research in the 
evolutionary approaches applied for optimizing MEMS design. 
These approaches lies in different aspects of a design process, 
from a system level synthesis down to a lower level mask 
layout synthesis for the fabrication process, from design 
efficiency improvement by reducing the total number of 
evaluations to robust design for counteract fabrication 
uncertainty. Compared with the traditional optimization method 
for automated design of MEMS, these evolutionary approaches 
is more capable for multi-objective DO and maintain better 
performance for searching global optimum solution. 
Furthermore, multi-objective optimization problem for MEMS 
design can be better solved by effective MOEAs such as 
MOGA and NSGA-II. 

Although with great potential, this field is still in an initial 
stage and needs to address a lot of challenges in its future 
development. For example, while many approaches in device 

level synthesis have been proposed, we are still lack of a 
synthesis tool that can integrate DO for all levels of design. The 
connection between different levels is only detailed or defined 
in a few cases. Besides, we have robust techniques in device 
level and process level designs, but we still lack these criteria in 
system level design.  
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